Meso-microscale coupling for wind resource assessment using averaged atmospheric stability conditio
The publication has been published in Meteorologische Zeitschrift Vol. 28 No. 4 (2019), p. 273 - 291, on Marsch 20, 2019. Link to publication: https://www.schweizerbart.de/papers/metz/detail/28/91761/Meso_microscale_coupling_for_wind_resource_assessm?af=crossref
Abstract
A methodology to couple Numerical Weather Prediction (NWP) models with steady-state Computational Fluid Dynamic (CFD) models for wind resource assessment applications is proposed. NWP simulations are averaged according to their atmospheric stability and wind direction. The averaged NWP simulations are used to generate the initial and boundary conditions of the CFD model. The method is applied using one year of Weather Research and Forecasting (WRF) simulations at the Honkajoki wind farm in Finland and validated by Sonic Detection and Ranging (SODAR) measurements at the site. It is shown that coupled simulations reproduce a more realistic shear for heights above 150 m. In terms of estimated energy production, there is not a big difference between coupled and standalone models. Nevertheless, a considerable difference in the horizontal wind speed patterns can be seen between the coupled and non-coupled approaches. The WRF model resolution has only a small influence on the coupled CFD results.
Picture: Unsplash